The Lanczos Algorithm With Partial Reorthogonalization By Horst
نویسندگان
چکیده
The Lanczos algorithm is becoming accepted as a powerful tool for finding the eigenvalues and for solving linear systems of equations. Any practical implementation of the algorithm suffers however from roundoff errors, which usually cause the Lanczos vectors to lose their mutual orthogonality. In order to maintain some level of orthogonality, full reorthogonalization (FRO) and selective orthogonalization (SO) have been used in the past as a remedy. Here partial reorthogonalization (PRO) is proposed as a new method for maintaining semiorthogonality among the Lanczos vectors. PRO is based on a simple recurrence, which allows us to monitor the loss of orthogonality among the Lanczos vectors directly without computing the inner products. Based on the information from the recurrence, reorthogonalizations occur only when necessary. Thus substantial savings are made as compared to FRO. In some numerical examples we apply the Lanczos algorithm with PRO to the solution of large symmetric systems of linear equations and show that it is a robust and efficient algorithm for maintaining semiorthogonality among the Lanczos vectors. The results obtained compare favorably with the conjugate gradient method.
منابع مشابه
The Design of a Block Rational Lanczos Code with Partial Reorthogonalization and Implicit Restarting
We discuss the design and development of a new Fortran code EA16 for the computation of selected eigenvalues and eigenvectors of large-scale real symmetric eigenvalue problems. EA16 can be used for either the standard or the generalized eigenvalue problem. The underlying method used by EA16 is the block Lanczos method with partial reorthogonalization plus implicit restarting, combined with purg...
متن کاملPerformance Evaluation of Golub-Kahan-Lanczos Algorithm with Reorthogonalization by Classical Gram-Schmidt Algorithm and OpenMP
The Golub-Kahan-Lanczos algorithm with reorthogonalization (GKLR algorithm) is an algorithm for computing a subset of singular triplets for large-scale sparse matrices. The reorthogonalization tends to become a bottleneck of elapsed time, as the iteration number of the GKLR algorithm increases. In this paper, OpenMP-based parallel implementation of the classical Gram-Schmidt algorithm with reor...
متن کاملA Robust and Efficient Parallel SVD Solver Based on Restarted Lanczos Bidiagonalization
Lanczos bidiagonalization is a competitive method for computing a partial singular value decomposition of a large sparse matrix, that is, when only a subset of the singular values and corresponding singular vectors are required. However, a straightforward implementation of the algorithm has the problem of loss of orthogonality between computed Lanczos vectors, and some reorthogonalization techn...
متن کاملComputing charge densities with partially reorthogonalized Lanczos
This paper considers the problem of computing charge densities in a density functional theory (DFT) framework. In contrast to traditional, diagonalization-based, methods, we utilize a technique which exploits a Lanczos basis, without explicit reference to individual eigenvectors. The key ingredient of this new approach is a partial reorthogonalization strategy whose goal is to ensure a good lev...
متن کامل